
SMAT: Synchronous Multimedia and Annotation Tool

Michelle Potts Steves, M. Ranganathan, Emile Morse
National Institute of Standards and Technology

{msteves, mranga, emile.morse} @nist.gov

a

a
up

ing
.
lds
d
r
ld
.

d
nt
d.
he
the

ds
r
ith

that
cts
s

and
ut
he
e
es
ail

is
n
e

nd
n
a
to
le-
its
Abstract
We describe the design and use of SMAT, a tool designed to
be part of a scientific collaboratory for use in a robotic arc
welding research project at the National Institute of
Standards and Technology (NIST). The primary functional
requirements of SMAT are to provide the capability to
capture, synchronize, play back and annotate multimedia
data in a multi-platform, distributed environment. To meet
these requirements, SMAT was designed as a control and
integration framework that exploits existing tools to render
specific media types and control annotation sessions.
SMAT defines a component architecture framework where
such tools can be plugged in and controlled using a
distributed, event-driven, tool bus architecture. SMAT’s
modular architecture enables control inputs to come from
anywhere in the distributed collaborative environment,
thus allowing for simultaneous remote and local control of
the tool, as well as painless interfacing with the existing
collaborative environment. SMAT is built on an agent
middleware called AGNI, also developed at NIST. We give
an overview of AGNI that can be used to build failure
resilient, distributed, event-driven applications. In addition
to describing SMAT’s design, interface and underlying
middleware, we present performance information, an
initial analysis of welding users’ experiences and feedback,
related work and our plans for further SMAT development.

Introduction

The increasing globalization of manufacturing and
distribution of enterprises demands concurrent information
exchange and collaboration throughout the product
development life cycle. This creates an increasing
dependence on information technology to share disparate
data among geographically dispersed staff. Globalization
trends and recent advances in information technology
provide an opportunity now for Computer Supported
Cooperative Work (CSCW) [10]. Imagine this scenario,
where advanced integrated CSCW technology is used to
enable the efficient trouble-shooting of a manufacturing

process problem by one of the few experts available in
highly specialized field:

Jade, a welding engineer, is reading her e-mail, when
yellow, flashing icon beeps on her computer. She opens
the icon and sees a message about trouble on a weld
line as well as a hyperlink to a virtual collaboration space
She clicks the hyperlink and sees a long list of good we
denoted by a green color code, in a dynamically update
data table. Additionally, there are two welds that are colo
coded yellow; the second suspect yellow we
automatically triggered the warning icon on her desktop
Clicking the yellow label invokes a Virtual Reality
Modeling Language (VRML) current-voltage graph plotte
over the geometry of the weld, overlaid with a transpare
template for a good weld, with tolerance ranges indicate
The first bad weld shows a problem at the beginning of t
weld sequence but the second shows a problem toward
end.

Jade starts a multimedia playback for each of the wel
that includes audio, video, sensor and controlle
information. She associates some spikes in the graphs w
some sounds and visual signs in the welds themselves
make her suspect a faulty power supply. She conta
Harry, the job setter for the problem welding cell, and ask
him to use his PC to join her in the virtual collaboration
space. She points out features she sees in the data,
together they decide to call in an electrician to check o
the power supply. Jade suggests that Harry show t
electrician the current-voltage graphs to help explain th
problem they suspect with the power supply. Jade mak
some annotations in the welding data and sends an em
to her European counterpart as a “heads-up”.

The basic technology components exist for enabling th
and other types of collaboration that will be common i
future global manufacturing environments. The challeng
is in understanding the collaboration requirements, a
identifying and integrating appropriate collaboratio
technology solutions. In this paper, we focus on
component of a scientific collaboratory developed
support geographically dispersed manufacturing troub
shooting processes. We describe the design of SMAT,

nge

s-
of

nd
of
is
e
t
es
al
se

ity
nt
ed
s,
m.
g

ot
the
e
se
port
)

n
hey
ng
A
or
nd

y
d
s
ta
e

ed

g
s.

ats
d

e.
ta,
on
nd
environment and underpinnings, benefits and our future
plans.

Background

Successful groupware deployment is more than
installing video conferencing on every computer
workstation available; it is a thoughtful exercise that
considers many factors, just as there many perspectives
contributing to the CSCW discipline. Specifically, its aim
is to apply the right collaborative tool(s) for a job given
many factors. For instance, there is considerable research
showing that adding audio to desktop conferencing
improves problem solving among team members, however
there typically is no benefit to adding video [19].
Meanwhile, new research shows promise for video
providing significant benefit when used in tasks involving
speakers with different priorities and different linguistic
capabilities [19]. This type of finding holds the promise to
support increasingly diverse work teams in our
increasingly global economy. With the aid of CSCW,
groupware will eventually support the way we work, i.e.,
cooperatively, and often distantly located.

In the introduction, we described a scenario where
collaboration tools are used to trouble-shoot a problem
with an automated welding process. There are many
scenarios repeated throughout manufacturing process
engineering and other domains, similar to trouble-shooting
problem welds, where collaborative tools would be useful.
In these scenarios, there are problems with a process and
there are various types of “experts” including operators and
engineers who are not necessarily co-located. They need to
communicate regarding the problem, symptoms, past
history, etc., and they need to suggest and experiment with
alternatives (e.g., using integrated simulation tools, etc.).

Welding

Researchers at NIST's Manufacturing Engineering
Laboratory and Information Technology Laboratory are in
the process of instituting and assessing collaboration
technologies for manufacturing applications [17]. We are
particularly interested in how collaboration tools can be
used effectively in manufacturing environments and how
manufacturing practices will change as a result of their use.
We expect these studies will yield useful insights into
future data interchange standards needs, as well as advance
the state of the art and practice in CSCW deployment for
manufacturing and possibly other domains. We are
employing user-centered design, as it has been shown to
increase the likelihood of acceptance, effectiveness, and
user satisfaction of IT systems [e.g., 7, 8, 9]. Field studies
are being used to document the work and show where there

are changes in manufacturing processes and data excha
requirements as a result of these systems’ use.

Our current work, set in the context of automated ga
metal robotic welding, assesses the deployment and use
collaboration technologies for process engineering a
trouble-shooting. In industry, there is a relative scarcity
welding engineers. One component of a solution to th
problem is to use welding engineers’ time mor
productively. Currently, time is wasted in travel and no
being able to oversee problems at co-located sit
concurrently because of inadequate tools. If a virtu
presence could be established that mitigates the
problems, some, if not substantial increases in productiv
could be achieved. Collaboration is a vital compone
surrounding the testing and trouble-shooting of automat
robotic gas-metal welding equipment, welding processe
and the analysis of subsequent welds by a welding tea
Collaboration technology holds the promise of realizin
substantial savings in productivity by allowing
geographically dispersed welding teams to trouble-sho
bad welds over time and distance, as conceptualized in
“Jade” illustration. (To address the issue of whether th
NIST collaboratory addresses real-world problems, the
ideas were presented and greeted with unanimous sup
at the National Advanced Manufacturing Testbed (NAMT
Gas-Metal Arc Welding Workshop, September 1998.)

NIST welding researchers have a similar collaboratio
scenario, where, as a geographically dispersed team, t
are working to define interface standards between weldi
work cell components, controllers, and power supplies.
functioning welding testbed has been implemented f
testing the interfaces between components, controllers, a
power supplies. Analysis of welds is performed to verif
effective operation of interfaces, equipment, an
controllers [14]. Just as in the industrial operation
scenario, task appropriate collaborative and da
visualization technologies hold the promise of effectiv
collaboration over time and distance.

Summarized requirements

The welding collaboratory requirements were gather
and documented, and are summarized here:
1. Weld analysis requires collaboration amon

participants in distant locations and time zone
Asynchronous communications are required.

2. The welding process generates data in various form
that multiple people need to access, review, an
annotate. Not all formats have been specified to dat

3. NIST researchers require a central repository of da
which supports appropriate access permissi
controls, supports heterogeneous data formats, a
2

nt
n-
or
es
An

f

is
as
n

be

ell
le
is
s
to

ial
of
y
rds
allows for organizing data and interactions around a
central principle, e.g., around a particular weld or part.

4. Engineers need to divide time among several
problems, and therefore do not want the burden of
being in lockstep synchrony with each current
problem.

5. High networking bandwidth solutions can not be
imposed because some welding industries and sites do
not have high capacity networking infrastructure.

6. Potential solutions must run on the major computing
platforms.

7. To analyze welds, a data visualization tool
incorporating an overlay of bad welds on a good weld
template with delineated tolerance ranges is needed.

8. To identify trends and analyze problems, a
visualization of a time series of good and bad welds
per work cell is needed.

9. A synchronized replay of weld audio, video, sensor,
and controller data is needed. Further, the capability to
make annotations at notable events during the weld
data replay is especially important.
A combination of collaborative tools is being used

since no single commercial, off-the-shelf (COTS) tool was
available that met all the requirements. To accelerate tool

deployment, a COTS tool, Teamwave Workplace1, was
chosen as the foundation tool for the welding
collaboratory, as it met many of the requirements, was

extensible, and was developed in an environme
supporting CSCW research. SMAT was developed i
house and integrated with Teamwave Workplace (TW) f
a seamless collaboratory. While SMAT specially address
requirement #9, it also addresses requirements 1-6.
overview of the collaboratory systems follows.

The NIST Collaboratory

The NIST collaboratory is comprised of a number o
systems, depicted in Figure 1. Thewelding systemitself
has a number of modules. But for the purposes of th
paper, it can be viewed as a remote instrument that h
software controls, but requires human intervention to ru
(fixturing, control program generation, etc.). Images can
captured in the welding facility by manual interaction with
a pan/tilt/zoom camera mounted above the welding c
that is controlled from a web page. In some cases multip
images of a single weld are obtained after the weld
completed, since during actual welding, lighting condition
do not usually allow image capture. Data files are saved
a networked file store.

1. Teamwave Workplace (Roseman, 2000) is a commerc
product identified in this document for the purpose of evaluating a class
collaboration technologies. This identification does not imply an
recommendation or endorsement by the National Institute of Standa
and Technology.

Figure 1: The NIST Manufacturing Collaboratory
3

ta
op
e.
le
e
the
n.
ns

s a
g
e
I)
))
e

in
A daemon processmonitors for the creation of new
welding files and processes them. The daemon copies the
files, massages the data to synchronize the streams, creates
SMAT-readable files, places the pertinent files in a File
Transport Protocol (FTP) repository, builds a metadata file
for SMAT that consolidates pointers to the various related
data streams and puts a pointer to the metadata file in a
predetermined location in Teamwave Workplace. Team
members can then access the data through the Teamwave
Workplace interface or a standalone version of SMAT.
Security of the data is managed through the password
protection mechanism built into FTP.

Teamwave Workplace[15] is used as the overarching
collaboration tool in the collaboratory. TW is a rooms-
based collaboration system with a whiteboard backdrop.
Rooms provide boundaries for data groupings and user
interactions as well as a metaphor for easing the transition
to groupware [6]. Data organization within rooms is
configurable by its occupants in how they organize various
tools housing their data, such as file viewers, file holders,
PostIt™ notes, and message boards. The system provides
for synchronous and asynchronous user interactions, but
importantly, these interactions are in the context of relevant
data. The tool set is extensible, e.g., custom tools such as
SMAT can be added. Figure 2 shows a screen shot of a
room in Teamwave Workplace supporting the analysis
activities of a weld. The left-most portion of the room
shows summary status and navigation information, the
center and right portions show data for a good weld and a
bad weld, respectively. At the bottom of the window is an
in-progress chat session regarding the analysis of the latest
weld data.

SMAT is a software solution for capturing,
synchronizing, playing back and annotating multimedia
data streams in a multi-platform (Windows NT and UNIX),
distributed environment. SMAT annotations support
collaboration. We anticipate extending SMAT’s
capabilities to include synchronous playback by various
team members. Further, SMAT provides a fairly unique
capability of playing multiple synchronized data steams of
heterogeneous formats at the same time. SMAT is both a
visualization tool for viewing any number of streams of
heterogeneous multimedia data at the same time and a
collaboration tool, providing an annotation facility for
notable “events” during the viewing of those streams.

SMAT Functional Scenario

Sensors in various parts of the welding system and
welding cell controller produce data of various media types
– for example, video, audio, discrete images and discretely
sampled current and voltage. The primary functional
requirements for SMAT are to provide the capability to

synchronize and play back the captured multimedia da
after the weld is complete and to provide a means to st
the play back and make an annotation at any point in tim
After the annotation is composed, it can be made availab
for other users to view and, if they wish, annotate th
annotation. During subsequent sessions, the media and
annotations are played back in synchronous fashio
During replay, annotations appear at appropriate locatio
(times) along the timeline.

SMAT Design and Implementation

To meet these requirements, SMAT was designed a
control and integration framework that exploits existin
tools to play specific media types. Each tool to b
controlled exports an Application Protocol Interface (AP
or mechanism (such as Component Object Model (COM
that permits it to be controlled from another process. Th
tools are tied together using a commoncontrol bus. The
idea of the bus is much the same as the idea of a bus

Figure 2: Teamwave Workplace “room” showing
various tools and data for two related welds
4

e
he
o
as
ay
g

er
of
d
a
s
r.
ral
d
f

of
be
nts

n
at
ts
r

y
.

computer hardware. Components are tied together by
plugging them into the software bus in the same fashion as
cards are plugged into a hardware bus. The components in
this case are slave processes that play the different
multimedia files and take commands from the bus. One of
our goals was to make SMAT operational on multiple
computing platforms. Unfortunately, there is no uniformity
in component architectures across platforms. In order to
achieve cross-platform uniformity, the interfaces to the
tools under control must be made uniform, which we
accomplish by wrapping a controller script around each
tool. For example, we can use XANIM [20] as a tool that
plays video under UNIX. XANIM takes external input via
property change notifications on a XWindow Property. If
we use a Microsoft tool, it may export COM interfaces for
external control. In general, each tool may have its own
idiosyncrasies for external communication. We encapsulate
these via a software driver wrapper that hides the
communication complexities from the control layer and
registers standardized callbacks with the control layer. The
callbacks include astart interface, astop interface, aquit
interface, atimer tick interface and aseekinterface, all
which are called from the controller at appropriate times. It
is up to the driver to communicate with the slave tool if
needed on each of these calls. To enhance usability, we use
Tk window embedding to achieve a uniform look and feel.
Each tool that has an embeddable top-level window is
embedded in a common canvas. The architecture is shown
in Figure 3.

The key innovation here is separation of control from
the tool that is being controlled. By architecting and
building tools in this fashion, control can be distributed and

modularized. For example, the global controller in th
Figure 3 can receive commands from anywhere in t
distributed environment. This makes it possible t
distribute the control and enable synchronous as well
asynchronous collaboration. For example, a user m
enable another user to control the tool by simply enablin
the global controller to accept control inputs from the oth
user. This local-remote transparency and distribution
control formed the requirements of our distribute
scripting environment that can be used for building
variety of collaborative tools including the synchronou
multimedia annotation tool that is the subject of this pape
We considered the event abstractions to be of gene
interest and hence built a distributed, event-oriente
scripting environment called AGNI that is the subject o
the next section.

AGNI Overview

Collaborative environments have a common set
communication and infrastructure requirements that can
abstracted into a common framework. These requireme
are as follows:
1. Event-oriented structure: A user may perform a

action at his or her workstation and the effects of th
action have to be fielded by the other participan
(either synchronously or asynchronously) fo
collaboration to occur.

2. Distribution: Clearly, the primary requirement for an
collaborative environment is that it be distributed (i.e
be able to run across multiple sites).

Figure 3: The SMAT Architecture
5

rs
ed
te
eam
ns
in
nts

he
a

of
m
in

y
are

d
d.
an

he

en
e

ring

ve
of

e
e.

n.
at
3. Security: Unless we are working in a closed
environment, it is necessary to incorporate security
mechanisms into the system to prevent inadvertent or
malicious disruptions of the environment.

4. Failure Detection and Recovery: Failures are a
common occurrence in distributed systems and the
collaborative environment should be able to detect
these and possibly support recovery from failure. A
primary requirement for failure recovery is that the
failure state be well defined so that appropriate failure
handlers can be incorporated.

5. Heterogeneity: Given the plethora of existing tools and
technologies, a pragmatic approach to building
collaborative tools aims to compose tools into more
powerful tools in much the same way as we have
composed SMAT above.

Given these common requirements, we designed and
constructed a Tcl/Tk based distributed scripting tool, called
AGNI (Agents atNIST, also, Sanskrit for “fire”). The basic
idea is to enable the logical design of a distributed
collaborative environment independent of the physical
placement of components. Using this approach, the
designer may design composite, event-oriented tools and
distribute the control by pushing the control elements to the
collaborating parties’ workstations. Stated differently, our
approach is to generalize the basic idea of an applet to a
distributed system. The basic abstractions in our system are
Mobile Streams, Sites and Sessions.

A Mobile Stream (MStream) is a named
communication end-point in a distributed system that can
be moved from machine to machine while a distributed
computation is in progress and while maintaining a pre-
defined ordering guarantee of message consumption with
respect to the order in which messages are sent to it. A
MStream has a globally unique name.

We refer to any processor that supports a MStream
execution environment as a Site. The closest analogy to a
MStream is a mobile active mailbox. MStreams provide a
First-In-First-Out (FIFO) message-ordering guarantee.
While mailboxes are usually stationary, MStreams, have
the ability to move from Site to Site dynamically. While
mailboxes are usually passive, message arrival at a
MStream can trigger the concurrent execution of message
consumption event handlers registered with the MStream.

A distributed system consists of one or more Sites. A
collection of Sites participating in a distributed application
is called aSession. Each Session has a designated, trusted,
reliable Site called aSession Leader. Each Site is assigned
a Location Identifierthat uniquely identifies it within a
given Session. New Sites may be added and removed from
the Session at any time. A MStream may be located on, or
moved to any Site in the Session that allows it to reside
there. MStreams may be opened like sockets and messages

may be appended to them. Multiple Event Handle
(Handlers) may be dynamically attached to and detach
from a MStream. Handlers are invoked on discre
changes in system state such as message delivery, MStr
relocations, new Handler attachments, new Site additio
and Site failures. We refer to these discrete changes
system state as Events. Handlers are attached by Age
that provide an execution environment and thread for t
Handlers that they attach. That is, an Agent specifies
collection of Handlers that all use the same thread
execution and interpreter. Logically, a distributed syste
that is constructed using AGNI is structured as shown
Figure 4.

Handlers can communicate with each other b
appending messages to MStreams. These messages
delivered asynchronously to the registered Appen
Handlers in the same order that they were issue
(Synchronous delivery of messages is supported as
option, but asynchronous delivery is expected to be t
common case.) Byasynchronous deliverywe mean that the
sender does not block until the message has be
consumed in order to continue its execution. Th
underlying messaging code takes care of message buffe
and reliable delivery.

An application built using the AGNI middleware, may
be thought of as consisting of two distinct parts – an acti
part and a reactive part. The reactive part consists
Streams and Handlers. The active part orShelllives outside
the middleware and drives it. A Shell may connect to th
middleware and issue requests and may exit at any tim
The reactive part is persistent for the life of the Sessio
Figure 5 shows an example of a distributed application th

Figure 4: A logical view of a distributed system
constructed using AGNI.

Session

Site

MStream

A
G
E
N
T

A
G
E
N
T

Site

MStream MStream

A
G
E
N
T

A
G
E
N
T

A
G
E
N
T

6

s
el,
r

n

rol
h a
he
6,
left
d at
hat
ta

the
ta

d
.
ta

ing
he
by

le.
es
ost
consists of two MStreams. When a message is consumed,

the on_stream_append-handler runs. When a message is
sent to the MStream ‘bar’, it relocates itself and prints its
current location.

AGNI allows mobility and dynamic extensibility by
permitting MStream movement while there are pending,
undelivered messages. Provided the state of the distributed
application can be encapsulated and represented as strings,
it can be stored in a briefcase structure and moved along
with the MStream, and re-instantiated at the new Site. This
allows personal mobility in a collaborative environment. In
order to preserve message ordering in the presence of such
mobility, we have designed a custom communication
protocol on top of User Datagram Protocol (UDP) that
preserves order in the presence of mobility and failure [13].

A centralized, reliable Failure Manager handles
failures. This is a reliable location where the failure
handler that is attached to an MStream executes. The
failure recovery mechanism also resynchronizes sequence
numbers so that message delivery ordering can be
preserved. The design of AGNI is described in greater
detail in an earlier paper by Ranganathan,et. al. [12].

Applications built using Mobile Streams can be
extended from multiple points of control; any handler or
Shell that has acquired an open MStream handle, can
attempt to re-configure or extend the reactive part of the
system and these actions can occur concurrently. While
this adds great flexibility, it also raises several security and
stability issues. We provide a means of restricting system
reconfiguration and extension using control Events that can
invoke policy Handlers. Only privileged Agents may
register these policy Handlers. We follow a discretionary
control philosophy by providing just the mechanism and

leaving the policy up to individual applications. Control
may be placed via policy Handlers at a session-wide lev
site-wide level and at the level of individual MStreams fo
various security-relevant Events.

Graphical User Interface

The user interface for the SMAT application is shown i
Figure 6. SMAT is written in Tcl/Tk. Graphical User

Interface (GUI) events are also sent through the cont
bus. The elements of the display are configurable throug
script file containing the names, locations and types of t
component files. In the configuration shown in Figure
there are three graphs, an image and a text widget. The
and center graphs represent two data streams capture
the time a weld was made. The right graph shows data t
was generated by applying an algorithm to these two da
streams, along with some constant data based on
conditions under which the weld was made. Each da
stream is time-stamped, allowing the use of areplay
facility. Zooming and translation of the graphs is controlle
through the series of icons shown just below each graph

One or more images can be displayed with other da
along a common timeline.

The user interacts with the graphs and images by us
the replay feature, which is located immediately above t
text box. The user controls the progress of the replay
choosingstart, stopor rewind. In addition, the associated
slider may be dragged to any position of the time sca
During replay, a vertical line on each of the graphs mov
synchronously through the graph. Simultaneously, the m

stream_create foo
stream_create bar
register_agent foo {} {

stream_open bar
on_stream_append {

stream_append bar $argv
}

}
register_agent bar {} {

on_stream_append {
puts $argv
stream_relocate 1

}
on_stream_relocation {

puts “I am at [stream_location]”
}

}

Figure 5: An example script that realizes a self-
reconfiguring event-driven distributed

application.

Figure 6: User Interface of SMAT
7

er
tive
o
f

ial.
te

ion
nal
ing.
ne
till
as
y
ple
ng

3]
by

ng
n

ar
es
hat
eir
s

[4,
for
h
t
d

r
ith

n
n
k

d
al
to
t

e
it
se
e
e

se.
ot
recent image and most recent annotation are updated in
their respective locations.

Annotation facility

SMAT not only allows visual review of a weld and its
associated parameters, but also provides the user with the
ability to create time-based annotations. If the replay
feature is paused, selecting the ‘Edit’ button at the bottom
of the text window invokes the user’s default editor (e.g.,
Word). When a new comment is to be generated, a
template appears already seeded with the name of the part
being welded, the time segment to which the annotation
applies, and hyperlinks to related graphs, images and
associated comments. The user merely types his comment
and saves the document, while the system takes care of
naming the file. Annotations are stored on the local client
until the user decides to submit them for group availability.

Benefits of Design

There are several advantages to structuring a tool using
the architecture described above.

Distributed ControlEach tool is controlled by a separate
AGNI agent that implements its driver. The driver reacts to
events that can be generated from anywhere in the
distributed application. For example, the slider tool can
append messages to the controller that re-distributes these
events asseekevents to each of the tool drivers. If the
multimedia tools support random seeks, they can respond
to such seek requests and position their media
appropriately, thereby giving the ability to have both real-
time and manually controlled synchronization. If we
wanted to share the slider, in a synchronous, collaborative
fashion, the seek input simply needs to originate from
another machine rather than the local slider. The control
inputs could also come from another collaborative
environment and indeed we have used this approach to
integrate the tool with the Teamwave Workplace client.

Isolation of ComponentsEach tool runs in its own
address space. Thus, a misbehaving tool cannot bring down
the application. Failures are easy to isolate and fix. We can
utilize off-the-shelf tools for media handling and
annotation whenever such tools are available. For example,
in our Windows NT version of the tool, we use the COM
IWebBrowser2interfaces to Windows Explorer and drive it
as an external tool to allow us to browse annotations.

Modularity and ExtensibilityAs all drivers export
uniform interfaces, it is easy to add support for new media
types. We simply build a driver to encapsulate the interface
to the tool and plug it into the bus.

Related Work

Annotations are an important concept in single-us
systems [16] and have been adapted for use in collabora
systems. The utility of linking a person’s thoughts t
material being viewed is critical to making sense o
decisions that were made based on the original mater
Annotations provide a method for managing corpora
memory and justifying decisions.

There are numerous, recent examples of annotat
software in the literature. Some systems support perso
annotations much as a person takes notes at a meet
Other systems focus on ‘secretarial’ annotations, e.g., o
person recording and sharing the results with a group. S
other systems treat annotations of novel media such
video and audio. SMAT derives its uniqueness b
addressing all of these issues in a shared context – multi
authors and multiple readers (re)viewing and annotati
multiple, heterogeneous synchronized data streams.

The Classroom 2000 project at Georgia Tech [1, 2,
incorporates some of the same ideas as those used
SMAT. The educational context supports teachers maki
alterations (annotations) to materials written on a
electronic whiteboard. Students can make simil
annotations in their personal notes. Sharing of not
between teachers and students is a more difficult issue t
has been tackled in the most recent paper [11]. Th
approach via linking is similar to the text annotation
provided by SMAT.

Video and multimodal annotations have been studied
5]. Written and spoken annotations have been tested
their ability to support indexing and search throug
multimodal archives. Although SMAT currently does no
present video or audio information, its architecture an
design philosophy make it critical to conside
incorporating enhanced annotations modes to deal w
enriched formats.

We derive some experience from our earlier work i
extending the Synchronized Multimedia Integratio
Language (SMIL) to support annotations [18]. This wor
resulted in a tool calledACTS, that allowed users to
perform annotations along with the replay of synchronize
multimedia streams. Because of the function
requirements of SMIL, the annotation feature had
function as an applet, with all the restrictions of the Apple
security model. Therefore, ACTS could not exploit nativ
tools for creating and editing annotations nor could
support synchronous operation. SMAT supports the
features, which are clearly useful for collaborativ
environments. On the other hand, ACTS offered th
advantages of Applets, i.e., ease of installation and u
Another enhancement that is possible with SMAT, and n
with ACTS, is the integration with another collaborative
8

al
a

te
te
be

tly
nt
uld
g

al
of
f
d
er-
he
d
t.
e

all
he
s
ls

y
tic

s a
ct

h
e
y

d
ce,
d
t of
l,
be

rs
’s
ia
us
er
on.
nd
est
environment, such as SMAT with the Teamwave
Workplace client.

Performance

One of the future generalizations we envision for SMAT
is the handling of real-time orcontinuous- time mediasuch
as audio and video. However, the tool also has to support
annotations and still images that appear at discrete time
intervals in the multimedia replay. To handle both media
types, we have added a real-time clock input that sends a
signal out on the control bus at a fixed, periodic interval.
This signal is ignored by the continuous-time media
players because they incorporate their own notion of time,
but is interpreted by the discrete-time media players to
initiate actions such as bringing up time-anchored
annotations, advancing the cursor on a graph, etc. The
smaller the interval of the clock tick, the finer the
granularity of these discrete actions with respect to the
continuous-time media replay. In order for the tool as a
whole to keep up with the clock rate of the bus, the tick has
to propagate through the event bus and the discrete time
media players have to complete their actions before the
next tick.

To get an idea of how well this scheme worked, we
measured the ability of SMAT in the configuration shown
in the GUI screen shot (Figure 6), to keep up with the clock
ticks that are generated by the timer. We measured the error
by letting the tool run for 30 seconds on a 130 MHz
machine running Windows NT and tracking the number of
ticks issued. By multiplying the tick interval by the number
of ticks, we get an idea of what the wall clock time should
have been provided the tool could keep up with the timer.
This enables us to compute the average error.

As shown in Figure 7, when the 30-second weld

sequence was broken into 0.75 second time slices, events
were handled fast enough that the display was updated at a
rate equivalent to the real time in which the data were

originally collected. However, when the 30-second interv
was broken into 300 slices of 0.1 seconds each,
significant lag was introduced into the event handling ra
which caused a 20% slowdown in the rendering ra
compared to real-time capture rate. The results can
expected to improve on more contemporary hardware.

Initial Analysis of Use

Welding engineers and guest researchers recen
participated in a welding exercise at NIST. The experime
was set up to test whether collaborative technologies co
be effectively incorporated into a pseudo-manufacturin
environment. Of the six participants in the experiment
scenario, only two performed roles that involved the use
SMAT for weld evaluation. Due to the small number o
users, the evaluation of SMAT is heuristic in nature an
includes mainly measures of user satisfaction. The us
centered design methodology employed in developing t
collaborative environment, including SMAT, has allowe
several rounds of testing and prototype refinemen
Observation and elicitation of talk aloud protocols were th
main methods for capturing user feedback. The over
reaction to SMAT has been quite positive. Both users of t
software believed that it was unique, providing capabilitie
that would be useful enough to incorporate into other too
that they currently use for reviewing weld quality. The
recommended that additional types of data, such as sta
controller parameters, be added so that SMAT present
more complete picture of the real-time context. The fa
that SMAT displays could be invoked from within their
normal collaborative system (e.g., TW) was met wit
enthusiasm since as one user noted, “All my work is in on
place” and “It uses common ways of accessing all m
data”.

Plans for Future Development

Since SMAT is a prototype tool that was develope
employing user-centered design for a specific audien
i.e., the NIST welding experts, its current features an
capabilities have been targeted to address a specific se
requirements. To generalize the applicability of the too
there are many potential enhancements that could
pursued. Among them are:

Real-time collaboration:SMAT could be enhanced to
support real-time collaboration. Using this capability, use
would effectively have partial control over each other
tools in order to share the same view of the multimed
data. This could be accomplished by using the b
architecture and distributing control of one session to oth
sessions, as mentioned in the Benefits of Design secti
Sharing the display events is a given, but some thought a
research would need be done to determine the b

Figure 7: Effect of data sampling rate on
deviation from real-time capture rate (130 MHz

CPU)
9

of

,

pe

.

ry,

y,
t

c
al

k
-

e
d

g
th
n
e

s,
ce,
candidate set of control events to share across multiple
sessions.

Changing requirements at the desktop:It is envisioned
that one very useful enhancement would be to modify
SMAT so that more display option changes could be made
at the desktop. Currently, a general set of options is
provided at tool start-up. More application-specific choices
could be made available to the user at start-up.
Additionally, it is also possible to provide the user with the
capability to make some display configuration changes
during execution rather than just at start-up.

Handling of additional media types:In the future, we
may have the need to handle different media types such as
video and audio. We will add support for these media types
as needed.

Intelligent merging of annotations:SMAT supports
disconnected operations. This means that there could be a
scenario where more than one user decides to annotate the
experiment at the same time offset from the start of the data
and at the same time. Currently, we do not support this
level of annotation merging and this is clearly a feature that
is needed to make the tool robust.

References

[1] Abowd, G., 1999, “Software Engineering Issues for
Ubiquitous Computing”, Proceedings of ICSE 99, Los Angeles,
CA, pp. 75-84.
[2] Abowd, G., C. Atkeson, A. Feinstein, C. Hmelo, R. Kooper, S.
Long, N. Sawhney and M. Tani, 1996, “Teaching and Learning as
Multimedia Authoring: the Classroom 2000 Project”,
Proceedings of Multimedia 96, Boston, MA, pp. 187-198.
[3] Abowd, G., J. Brotherton and J. Bhalodia, 1998, “Classroom
2000: A System for Capturing and Accessing Multimedia
Classroom Experiences”, Proceedings of CHI 98, Los Angeles,
CA, pp. 20-22.
[4] Bargeron, D., A. Gupta, J. Grudin and E. Sanocki, 1999,
“Annotations for Streaming Video on the Web”, Proceedings of
CHI 99, Pittsburgh, PA, pp. 278-279.
[5] Cheyer, A. and L. Julia, 1998, “MVIEWS: Multimodal Tools
for the Video Analyst”, Proceedings of IUI 98, San Francisco,
CA, pp. 55-62.
[6] Greenberg, S., and M. Roseman, 1998, “Using a Room
Metaphor to Ease Transitions in Groupware”, Research Report

98/611/02, Department of Computer Science, University
Calgary, Calgary, Alberta, Canada.
[7] Landauer, T., 1995,The Trouble with Computers: Usefulness
Usability and Productivity, Cambridge, MA, MIT Press.
[8] Marcus, A. and A. van Dam, 1991, “User Interface
Developments for the Nineties”, Computer, Vol. 249, pp.49-57.
[9] Nielsen, J., 1993,Usability Engineering, Boston, MA,
Academic Press.
[10] Menon, J., 1997, “Collaborative Visualization and
Modeling”, Proceedings of International Conference on Sha
Modeling and Applications, pp.178-187.
[11] Pimentel, M.d. G., G.D. Abowd and Y. Ishiguro, 2000
“Linking by Interacting: A Paradigm for Authoring Hypertext”,
Proceedings of Hypertext 2000, Austin, TX.
[12] Ranganathan, M., M. Bednarek, F. Pors and D. Montgome
2000, “AGNI: A Multithreaded Middleware for Distributed

Systems”, 7th USENIX Tcl/Tk Conference, Austin, TX, pp. 11-
21.
[13] Ranganathan, M., M. Bednarek and Doug Montgomer
2000, “Reliable Communication for Mobile Agents”, Agen
Systems and Architectures/Mobile Agents (AS/MA), ETH
Zurich, Switzerland, (to appear).
[14] Rippey, W. and J. Falco, 1997, “The NIST Automated Ar
Welding Testbed”, Proceedings, Seventh Internation
Conference on Computer Technology in Welding.
[15] Roseman, 2000,http://www.teamwave.com/.
[16] Schilit, B., G. Golovchinsky, and M. Price, 1998, “Beyond
Paper: Supporting Active Reading with Free Form Digital In
Annotations”, Proceedings of CHI 98, Los Angeles, CA, pp. 249
256.
[17] Steves, M. and A. Knutilla, 1999, “Collaboration
Technologies for Global Manufacturing”, Proceedings of th
ASME International Mechanical Engineering Congress an
Exposition (IMECE): Symposium on Manufacturing Logistics in
a Global Economy, Nashville, TN, pp. 541-555.
[18] Steves, M., W. Chang, and A. Knutilla, 1999, “Supportin
Manufacturing Process Analysis and Trouble Shooting wi
ACT”, Proceedings of the IEEE 8th International Workshops o
Enabling Technologies: Infrastructure for Collaborativ
Enterprises (WETICE), Stanford, CA, pp. 126-131.
[19] Williams, G., 1997, “Task Conflict and Language
Differences: Opportunities for Videoconferencing?” Proceeding
European Computer Supported Cooperative Work Conferen
pp. 97-108.
[20] XANIM, http://xanim.va.pubnix.com/xanim/home.html
10

	Abstract
	Background
	Welding
	Summarized requirements

	The NIST Collaboratory
	Figure 1: The NIST Manufacturing Collaboratory
	Figure 2: Teamwave Workplace “room” showing various tools and data for two related welds
	SMAT Functional Scenario
	SMAT Design and Implementation
	Figure 3: The SMAT Architecture

	AGNI Overview
	Figure 4: A logical view of a distributed system constructed using AGNI.
	Figure 5: An example script that realizes a self- reconfiguring event-driven distributed applicat...

	Graphical User Interface
	Figure 6: User Interface of SMAT
	Annotation facility

	Benefits of Design
	Related Work
	Performance
	Figure 7: Effect of data sampling rate on deviation from real-time capture rate (130 MHz CPU)

	Initial Analysis of Use
	Plans for Future Development
	References

